63 感慨(2 / 2)

加入書籤

第一定律(即慣性定律)

任何一個物體在不受任何外力或受到的力平衡時(f=0),總保持勻速直線運動或靜止狀態,直到有作用在它上麵的外力迫使它改變這種狀態為止。

第二定律

1牛頓第二定律是力的瞬時作用規律。力和加速度同時產生、同時變化、同時消逝。2f=是一個矢量方程,應用時應規定正方向,凡與正方向相同的力或加速度均取正值,反之取負值,一般常取加速度的方向為正方向。3根據力的獨立作用原理,用牛頓第二定律處理物體在一個平麵內運動的問題時,可將物體所受各力正交分解,在兩個互相垂直的方向上分別應用牛頓第二定律的分量形式:fx=x,fy=y列方程。

牛頓第二定律的六個性質:1因果性:力是產生加速度的原因。2同體性:f合、a對應於同一物體。3矢量性:力和加速度都是矢量,物體加速度方向由物體所受合外力的方向決定。牛頓第二定律數學表達式∑f=中,等號不僅表示左右兩邊數值相等,也表示方向一致,即物體加速度方向與所受合外力方向相同。4瞬時性:當物體(質量一定)所受外力發生突然變化時,作為由力決定的加速度的大小和方向也要同時發生突變;當合外力為零時,加速度同時為零,加速度與合外力保持一一對應關係。牛頓第二定律是一個瞬時對應的規律,表明了力的瞬間效應。5相對性:自然界中存在著一種坐標係,在這種坐標係中,當物體不受力時將保持勻速直線運動或靜止狀態,這樣的坐標係叫慣性參照係。地麵和相對於地麵靜止或作勻速直線運動的物體可以看作是慣性參照係,牛頓定律隻在慣性參照係中才成立。6獨立性:作用在物體上的各個力,都能各自獨立產生一個加速度,各個力產生的加速度的失量和等於合外力產生的加速度。

適用範圍:1隻適用於低速運動的物體(與光速比速度較低)。2隻適用於宏觀物體,牛頓第二定律不適用於微觀原子。3參照係應為慣性係。兩個物體之間的作用力和反作用力,在同一直線上,大小相等,方向相反。(詳見牛頓第三運動定律)

第三定律

表達式f=-f''(f表示作用力,f''表示反作用力,負號表示反作用力f''與作用力f的方向相反)

這三個非常簡單的物體運動定律,為力學奠定了堅實的基礎,並對其他學科的發展產生了巨大影響。第一定律的內容伽利略曾提出過,後來r笛卡兒作過形式上的改進,伽利略也曾非正式地提到第二定律的內容。第三定律的內容則是牛頓在總結c·雷恩、j·沃利斯和c·惠更斯等人的結果之後得出的。

牛頓是萬有引力定律的發現者。他在1665~1666年開始考慮這個問題。萬有引力定律(funiversalgravitation)是艾薩克·牛頓在1687年於《自然哲學的數學原理》上發表的。1679年,r·胡克在寫給他的信中提出,引力應與距離平方成反比,地球高處拋體的軌道為橢圓,假設地球有縫,拋體將回到原處,而不是像牛頓所設想的軌道是趨向地心的螺旋線。牛頓沒有回信,但采用了胡克的見解。在開普勒行星運動定律以及其他人的研究成果上,他用數學方法導出了萬有引力定律。

牛頓把地球上物體的力學和天體力學統一到一個基本的力學體係中,創立了經典力學理論體係。正確地反映了宏觀物體低速運動的宏觀運動規律,實現了自然科學的第一次大統一。這是人類對自然界認識的一次飛躍。

牛頓指出流體粘性阻力與剪切率成正比。他說:流體部分之間由於缺乏潤滑性而引起的阻力,如果其他都相同,與流體部分之間分離速度成比例。在此把符合這一規律的流體稱為牛頓流體,其中包括最常見的水和空氣,不符合這一規律的稱為非牛頓流體。

在給出平板在氣流中所受阻力時,牛頓對氣體采用粒子模型,得到阻力與攻角正弦平方成正比的結論。這個結論一般地說並不正確,但由於牛頓的權威地位,後人曾長期奉為信條。20世紀,t·卡門在總結空氣動力學的發展時曾風趣地說,牛頓使飛機晚一個世紀上天。

關於聲的速度,牛頓正確地指出,聲速與大氣壓力平方根成正比,與密度平方根成反比。但由於他把聲傳播當作等溫過程,結果與實際不符,後來-s拉普拉斯從絕熱過程考慮,修正了牛頓的聲速公式。

大多數現代歷史學家都相信,牛頓與萊布尼茨獨立發展出了微積分學,並為之創造了各自獨特的符號。根據牛頓周圍的人所述,牛頓要比萊布尼茨早幾年得出他的方法,但在1693年以前他幾乎沒有發表任何內容,並直至1704年他才給出了其完整的敘述。其間,萊布尼茨已在1684年發表了他的方法的完整敘述。此外,萊布尼茨的符號和「微分法」被歐洲大陸全麵地采用,在大約1820年以後,英國也采用了該方法。萊布尼茨的筆記本記錄了他的思想從初期到成熟的發展過程,而在牛頓已知的記錄中隻發現了他最終的結果。牛頓聲稱他一直不願公布他的微積分學,是因為他怕被人們嘲笑。牛頓與瑞士數學家尼古拉·法蒂奧·丟勒(nicosfatiodeduillier)的聯係十分密切,後者一開始便被牛頓的引力定律所吸引。1691年,丟勒打算編寫一個新版本的牛頓《自然哲學的數學原理》,但從未完成它。一些研究牛頓的傳記作者認為他們之間的關係可能存在愛情的成分。不過,在1694年這兩個人之間的關係冷卻了下來。在那個時候,丟勒還與萊布尼茨交換了幾封信件。

在1699年初,皇家學會(牛頓也是其中的一員)的其他成員們指控萊布尼茨剽竊了牛頓的成果,爭論在1711年全麵爆發了。牛頓所在的英國皇家學會宣布,一項調查表明了牛頓才是真正的發現者,而萊布尼茨被斥為騙子。但在後來,發現該調查評論萊布尼茨的結語是由牛頓本人書寫,因此該調查遭到了質疑。這導致了激烈的牛頓與萊布尼茨的微積分學論戰,並破壞了牛頓與萊布尼茨的生活,直到後者在1716年逝世。這場爭論在英國和歐洲大陸的數學家間劃出了一道鴻溝,並可能阻礙了英國數學至少一個世紀的發展。

牛頓的一項被廣泛認可的成就是廣義二項式定理,它適用於任何冪。他發現了牛頓恆等式、牛頓法,分類了立方麵曲線(兩變量的三次多項式),為有限差理論作出了重大貢獻,並首次使用了分式指數和坐標幾何學得到丟番圖方程的解。他用對數趨近了調和級數的部分和(這是歐拉求和公式的一個先驅),並首次有把握地使用冪級數和反轉(revert)冪級數。他還發現了π的一個新公式。

他在1669年被授予盧卡斯數學教授席位。在那一天以前,劍橋或牛津的所有成員都是經過任命的聖公會牧師。不過,盧卡斯教授之職的條件要求其持有者不得活躍於教堂(大概是如此可讓持有者把更多時間用於科學研究上)。牛頓認為應免除他擔任神職工作的條件,這需要查理二世的許可,後者接受了牛頓的意見。這樣避免了牛頓的宗教觀點與聖公會信仰之間的沖突。

17世紀以來,原有的幾何和代數已難以解決當時生產和自然科學所提出的許多新問題,例如:如何求出物體的瞬時速度與加速度?如何求曲線的切線及曲線長度(行星路程)、矢徑掃過的麵積、極大極小值(如近日點、遠日點、最大射程等)、體積、重心、引力等等;盡管牛頓以前已有對數、解析幾何、無窮級數等成就,但還不能圓滿或普遍地解決這些問題。當時笛卡兒的《幾何學》和沃利斯的《無窮算術》對牛頓的影響最大。牛頓將古希臘以來求解無窮小問題的種種特殊方法統一為兩類算法:正流數術(微分)和反流數術(積分),反映在1669年的《運用無限多項方程》、1671年的《流數術與無窮級數》、1676年的《曲線求積術》三篇論文和《原理》一書中,以及被保存下來的1666年10月他寫的在朋友們中間傳閱的一篇手稿《論流數》中。所謂「流量」就是隨時間而變化的自變量如x、y、s、u等,「流數」就是流量的改變速度即變化率,寫作等。他說的「差率」「變率」就是微分。與此同時,他還在1676年首次公布了他發明的二項式展開定理。牛頓利用它還發現了其他無窮級數,並用來計算麵積、積分、解方程等等。1684年萊布尼茲從對曲線的切線研究中引入了和拉長的s作為微積分符號,從此牛頓創立的微積分學在大陸各國迅速推廣。

微積分的出現,成了數學發展中除幾何與代數以外的另一重要分支——數學分析(牛頓稱之為「借助於無限多項方程的分析」),並進一步進進發展為微分幾何、微分方程、變分法等等,這些又反過來促進了理論物理學的發展。例如瑞士j伯努利曾征求最速降落曲線的解答,這是變分法的最初始問題,半年內全歐數學家無人能解答。1697年,一天牛頓偶然聽說此事,當天晚上一舉解出,並匿名刊登在《哲學學報》上。伯努利驚異地說:「從這鋒利的爪中我認出了雄獅」。

微積分的創立是牛頓最卓越的數學成就。牛頓為解決運動問題,才創立這種和物理概念直接聯係的數學理論的,牛頓稱之為"流數術"。它所處理的一些具體問題,如切線問題、求積問題、瞬時速度問題以及函數的極大和極小值問題等,在牛頓前已經得到人們的研究了。但牛頓超越了前人,他站在了更高的角度,對以往分散的結論加以綜合,將自古希臘以來求解無限小問題的各種技巧統一為兩類普通的算法——微分和積分,並確立了這兩類運算的互逆關係,從而完成了微積分發明中最關鍵的一步,為近代科學發展提供了最有效的工具,開辟了數學上的一個新紀元。

牛頓沒有及時發表微積分的研究成果,他研究微積分可能比萊布尼茨早一些,但是萊布尼茨所采取的表達形式更加合理,而且關於微積分的著作出版時間也比牛頓早。

在牛頓和萊布尼茨之間,為爭論誰是這門學科的創立者的時候,竟然引起了一場悍然大波,這種爭吵在各自的學生、支持者和數學家中持續了相當長的一段時間,造成了歐洲大陸的數學家和英國數學家的長期對立。英國數學在一個時期裡閉關鎖國,囿於民族偏見,過於拘泥在牛頓的「流數術」中停步不前,因而數學發展整整落後了一百年。

1707年,牛頓的代數講義經整理後出版,定名為《普遍算術》。他主要討論了代數基礎及其(通過解方程)在解決各類問題中的應用。書中陳述了代數基本概念與基本運算,用大量實例說明了如何將各類問題化為代數方程,同時對方程的根及其性質進行了深入探討,引出了方程論方麵的豐碩成果,如:他得出了方程的根與其判別式之間的關係,指出可以利用方程係數確定方程根之冪的和數,即「牛頓冪和公式」。

牛頓對解析幾何與綜合幾何都有貢獻。他在1736年出版的《解析幾何》中引入了曲率中心,給出密切線圓(或稱曲線圓)概念,提出曲率公式及計算曲線的曲率方法。並將自己的許多研究成果總結成專論《三次曲線枚舉》,於1704年發表。此外,他的數學工作還涉及數值分析、概率論和初等數論等眾多領域。

牛頓在前人工作的基礎上,提出「流數(fluxion)法」,建立了二項式定理,並和gw萊布尼茨幾乎同時創立了微積分學,得出了導數、積分的概念和運算法則,闡明了求導數和求積分是互逆的兩種運算,為數學的發展開辟了一個新紀元。

二項式定理

在一六六五年,剛好二十二歲的牛頓發現了二項式定理,這對於微積分的充分發展是必不可少的一步。二項式定理在組合理論、開高次方、高階等差數列求和,以及差分法中有廣泛的應用。

二項式級數展開式是研究級數論、函數論、數學分析、方程理論的有力工具。在今天我們會發覺這個方法隻適用於n是正整數,當n是正整數1,2,3,,級數終止在正好是n+1項。如果n不是正整數,級數就不會終止,這個方法就不適用了。但是我們要知道那時,萊布尼茨在一六九四年才引進函數這個詞,在微積分早期階段,研究超越函數時用它們的級來處理是所用方法中最有成效的。?

牛頓曾致力於顏色的現象和光的本性的研究。1666年,他用三棱鏡研究日光,得出結論:白光是由不同顏色(即不同波長)的光混合而成的,不同波長的光有不同的折射率。在可見光中,紅光波長最長,折射率最小;紫光波長最短,折射率最大。牛頓的這一重要發現成為光譜分析的基礎,揭示了光色的秘密。牛頓還曾把一個磨得很精、曲率半徑較大的凸透鏡的凸麵,壓在一個十分光潔的平麵玻璃上,在白光照射下可看到,中心的接觸點是一個暗點,周圍則是明暗相間的同心圓圈。後人把這一現象稱為「牛頓環」。他創立了光的「微粒說」,從一個側麵反映了光的運動性質,但牛頓對光的「波動說」並不持反對態度。

從1670年到1672年,牛頓負責講授光學。在此期間,他研究了光的折射,表明棱鏡可以將白光發散為彩色光譜,而透鏡和第二個棱鏡可以將彩色光譜重組為白光。他還通過分離出單色的光束,並將其照射到不同的物體上的實驗,發現了色光不會改變自身的性質。牛頓還注意到,無論是反射、散射或發射,色光都會保持同樣的顏色。因此,我們觀察到的顏色是物體與特定有色光相合的結果,而不是物體產生顏色的結果。

從這項工作中,他得出了如下結論:任何折光式望遠鏡都會受到光散射成不同顏色的影響,並因此發明了反射式望遠鏡(現稱作牛頓望遠鏡)來回避這個問題。他自己打磨鏡片,使用牛頓環來檢驗鏡片的光學品質,製造出了優於折光式望遠鏡的儀器,而這都主要歸功於其大直徑的鏡片。1671年,他在皇家學會上展示了自己的反射式望遠鏡。皇家學會的興趣鼓勵了牛頓發表他關於色彩的筆記,這在後來擴大為《光學》(oticks)一書。但當羅伯特·胡克批評了牛頓的某些觀點後,牛頓對其很不滿並退出了辯論會。兩人自此以後成為了敵人,這一直持續到胡克去世。

牛頓認為光是由粒子或微粒組成的,並會因加速通過光密介質而折射,但他也不得不將它們與波聯係起來,以解釋光的衍射現象。而其後世的物理學家們則更加偏愛以純粹的光波來解釋衍射現象。現代的量子力學、光子以及波粒二象性的思想與牛頓對光的理解隻有很小的相同點。

1704年,牛頓著成《光學》,係統闡述他在光學方麵的研究成果,其中他詳述了光的粒子理論。他認為光是由非常微小的微粒組成的,而普通物質是由較粗微粒組成,並推測如果通過某種煉金術的轉化「難道物質和光不能互相轉變嗎?物質不可能由進入其結構中的光粒子得到主要的動力(activity)嗎?牛頓還使用玻璃球製造了原始形式的摩擦靜電發電機。

在1675年的著作《解釋光屬性的解說》(hyothesisexiningtheroertiesoflight)中,牛頓假定了以太的存在,認為粒子間力的傳遞是透過以太進行的。不過牛頓在與神智學家亨利·莫爾(henryre)接觸後重新燃起了對煉金術的興趣,並改用源於漢密斯神智學(hertici)中粒子相吸互斥思想的神秘力量來解釋,替換了先前假設以太存在的看法。擁有許多牛頓煉金術著作的經濟學大師約翰·梅納德·凱恩斯曾說:「牛頓不是理性時代的第一人,他是最後的一位煉金術士。」但牛頓對煉金術的興趣卻與他對科學的貢獻息息相關,而且在那個時代煉金術與科學也還沒有明確的區別。如果他沒有依靠神秘學思想來解釋穿過真空的超距作用,他可能也不會發展出他的引力理論。

↑返回頂部↑

書頁/目錄

本章報錯

玄幻相关阅读: 上位 回到八零發家致富 燕爾新婚 廢物美人被偏執boss纏上 炮灰真千金她不乾了 作為普通人,分身強億點很合理吧? 邪化黑巫 劇透多元宇宙:開局直播漫威 葉落不知歸 我的寶可夢實在太努力了